Package: TDCor (via r-universe)

September 14, 2024

RemoteSha 56cb383764216f9313ad99072b6a70473da6bb26

Contents

2 TDCor-package

TDCor-package *TDCor algorithm for gene regulatory network inference*

Description

TDCor (Time-Delay Correlation) is an algorithm designed to infer the topology of a gene regulatory network (GRN) from time-series transcriptomic data. The algorithm is described in details in Lavenus *et al.*, Plant Cell, 2015. It was initially developped to infer the topology of the GRN controlling lateral root formation in *Arabidopsis thaliana*. The time-series transcriptomic dataset analysed in this study is included in the package.

Details

The reconstruction of a gene network using the TDCor package involves six steps.

- 1. Load the averaged non-log2 time series transcriptomic data into the R workspace.
- 2. Define the vector [times](#page-24-1) containing the times (in hours) at which the samples were collected.
- 3. Define the vector containing the gene codes of the genes you want to reconstruct the network with (e.g. see 1_genes), as well as the associated gene names (e.g. see 1_names) and the associated prior (e.g. see [l_prior](#page-14-2)).
- 4. Build or update the TPI database using the [CalculateTPI](#page-6-1) or [UpdateTPI](#page-26-1) functions.
- 5. Build or update the DPI database using the [CalculateDPI](#page-3-1) or [UpdateDPI](#page-24-2) functions.
- 6. Reconstruct the network using the [TDCOR](#page-16-1) main function.

TDCor-package 3

See examples below.

Besides the functions of the TDCor algorithm, the package also contains the lateral root transcriptomic dataset ([LR_dataset](#page-12-1)), the times vector to use with this dataset ([times](#page-24-1)), the vector of AGI gene codes used to reconstruct the network shown in the original paper ([l_genes](#page-13-1)), the vector of the gene names ([l_names](#page-14-1)) and the prior ([l_prior](#page-14-2)). The associated TPI and DPI databases (TPI10 and DPI15) which were used to build the network shown in the original paper are not included. Hence to reconstruct the lateral root network, these first need to be generated. A database of about 1800 *Arabidopsis* transcription factors is also included ([TF](#page-23-1)).

Three side functions, [estimate.delay](#page-10-1), [shortest.path](#page-15-1) and [draw.profile](#page-9-1) are also available to the user. These can be used to visualize the transcriptomic data, optimize some of the TDCOR parameters, and analyze the networks.

Author(s)

Author: Julien Lavenus <jl.tdcor@gmail.com> Maintainer: Mikael Lucas <mikael.lucas@ird.fr>

References

Lavenus *et al.* (2015), Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones. The Plant Cell, *in press*.

See Also

See also [CalculateDPI](#page-3-1), [CalculateTPI](#page-6-1), [UpdateDPI](#page-24-2), [UpdateTPI](#page-26-1), [TDCOR](#page-16-1), [estimate.delay](#page-10-1).

Examples

```
## Not run:
# Load the LR transcriptomic dataset
data(LR_dataset)
```

```
# Load the vectors of genes codes, gene names and prior
data(l_genes)
data(l_names)
data(l_prior)
```
Load the vector of time points for the LR_dataset data(times)

Generate the TPI database (this may take several hours)

```
TPI10=CalculateTPI(dataset=LR_dataset,l_genes=l_genes,l_prior=l_prior,
times=times,time_step=1,N=10000,ks_int=c(0.5,3),kd_int=c(0.5,3),
delta_int=c(0.5,3),noise=0.1,delay=3)
```
Generate the DPI database (this may take several hours)

```
DPI15=CalculateDPI(dataset=LR_dataset,l_genes=l_genes,l_prior=l_prior,
times=times,time_step=1,N=10000,ks_int=c(0.5,3),kd_int=c(0.5,3),
delta_int=c(0.5,3), noise=0.15, delay=3)
# Check/update if necessary the databases
TPI10=UpdateTPI(TPI10,LR_dataset,l_genes,l_prior)
DPI15=UpdateDPI(DPI15,LR_dataset,l_genes,l_prior)
# Choose your parameters
ptime_step=1
ptol=0.13
pdelayspan=12
pthr_cor=c(0.65,0.8)
pdelaymax=c(2.5,3.5)
pdelaymin=0
pdelay=3
pthrpTPI=c(0.55,0.8)
pthrpDPI=c(0.65,0.8)
pthr_overlap=c(0.4,0.6)
pthr_ind1=0.65
pthr_ind2=3.5
pn0=1000
pn1=10
pregmax=5
pthr_isr=c(4,6)
pTPI=TPI10
pDPI=DPI15
pMinTarNumber=5
pMinProp=0.6
poutfile_name="TDCor_output.txt"
# Reconstruct the network
tdcor_out= TDCOR(dataset=LR_dataset, l_genes=l_genes,l_names=l_names,n0=pn0,n1=pn1,
l_prior=l_prior, thr_ind1=pthr_ind1,thr_ind2=pthr_ind2,regmax=pregmax,thr_cor=pthr_cor,
delayspan=pdelayspan,delaymax=pdelaymax,delaymin=pdelaymin,delay=pdelay,thrpTPI=pthrpTPI,
thrpDPI=pthrpDPI,TPI=pTPI,DPI=pDPI,thr_isr=pthr_isr,time_step=ptime_step,thr_overlap=pthr_overlap,
tol=ptol,MinProp=pMinProp,MinTarNumber=pMinTarNumber,outfile_name=poutfile_name)
## End(Not run)
```
CalculateDPI *Generate the DPI database to be used by the TDCOR main function*

Description

CalculateDPI builds a DPI database for the TDCOR main function to prune diamond motifs

CalculateDPI 5

Usage

CalculateDPI(dataset,l_genes, l_prior, times, time_step, N, ks_int, kd_int, delta_int, noise, delay)

Arguments

Details

CalculateDPI models two 4-genes networks showing slightly different topologies. Each network topology is modelled using a specific system of delay differential equations. For all genes listed in l_genes whose corresponding prior in l_prior is not null (i.e. the genes that are regarded as transcriptional regulators), the two systems of differential equations are solved N times with N different sets of random parameters. The Diamond Pruning Index (DPI) is calculated for all of these 2N networks. From these in silico data the conditional probability distribution of the DPI index given the regulator and the topology can be estimated. The probability distribution of the topology given DPI and the regulator is next calculated using Bayes' theorem and returned by the function. These shall be used when reconstructing the network to prune the "diamond" motifs.

CalculateDPI returns a list object which works as a database. It not only stores the conditional probability distributions but also all the necessary information for TDCOR to access the data, and the input parameters. The latter are read by the UpdateDPI function to update the database.

Value

CalculateDPI returns a list object.

Note

The computation of the TPI and DPI databases is time-consuming as it requires many systems of differential equations to be solved. It may take several hours to build a database for a hundred genes.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

See Also

See also [UpdateDPI](#page-24-2), [TDCor-package](#page-1-1).

CalculateTPI 7

Examples

```
## Not run:
# Load the LR transcriptomic dataset
data(LR_dataset)
# Load the vector of gene codes, gene names and prior
data(l_genes)
data(l_names)
data(l_prior)
# Load the vector of time points for the LR_dataset
data(times)
# Generate a small DPI database (3 genes)
DPI_example=CalculateDPI(dataset=LR_dataset,l_genes=l_genes[4:6],l_prior=l_prior[4:6],
times=times,time_step=1,N=5000,ks_int=c(0.5,3),kd_int=c(0.5,3),delta_int=c(0.5,3),
noise=0.15,delay=3)
```
End(Not run)

CalculateTPI *Generate the TPI database to be used by the TDCOR main function*

Description

CalculateTPI builds a TPI database for the TDCOR main function to prune triangle motifs

Usage

```
CalculateTPI(dataset,l_genes, l_prior, times, time_step, N, ks_int, kd_int,
delta_int, noise, delay)
```
Arguments

Details

CalculateTPI models three 3-genes networks showing slightly different topologies. Each network topology is modelled using a specific system of delay differential equations. For all genes listed in l_genes whose corresponding prior in l_prior is not null (i.e. the genes that are regarded as transcriptional regulators), the three systems of differential equations are solved N times with N different sets of random parameters. The Triangle Pruning Index (TPI) is calculated for all of these 3N networks. From these in silico data the conditional probability distribution of the TPI index given the regulator and the topology can be estimated. The probability distribution of the topology given TPI and the regulator is next calculated using Bayes' theorem and returned by the function. These shall be used when reconstructing the network to prune the "triangle" motifs.

CalculateTPI returns a list object which works as a database. It not only stores the calculated probability distributions but also information on how to access the data, and the input parameters. The latter are read by the UpdateTPI function to update the database.

Value

CalculateTPI returns a list object.

Note

The computation of the TPI and DPI databases is time-consuming as it requires many systems of differential equations to be solved. It may take several hours to build a database for a hundred genes.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

See Also

See also [UpdateTPI](#page-26-1), [TDCor-package](#page-1-1).

Examples

```
## Not run:
# Load the lateral root transcriptomic dataset
data(LR_dataset)
# Load the vectors of gene codes, gene names and prior
data(l_genes)
data(l_names)
data(l_prior)
# Load the vector of time points for the the lateral root dataset
data(times)
# Generate a small TPI database (3 genes)
TPI_example=CalculateTPI(dataset=LR_dataset,l_genes=l_genes[4:6],
l_prior=l_prior[4:6],times=times,time_step=1,N=5000,ks_int=c(0.5,3),
kd_int=c(0.5,3),delta_int=c(0.5,3),noise=0.1,delay=3)
## End(Not run)
```


Description

clean.at removes from a vector of gene codes l_genes all the elements for which no data is present in the matrix dataset.

Usage

clean.at(dataset,l_genes)

Arguments

Examples

```
## Load lateral root transcriptomic dataset and the l_genes vector
data(LR_dataset)
data(l_genes)
# Clean the l_gene vector
clean.at(LR_dataset,l_genes)
```


Description

draw.profile plots the expression profile of gene in dataset with respect to times.

Usage

```
draw.profile(dataset, gene, ...)
```
estimate.delay 11

Arguments

• main: String. Title of the graph.

Author(s)

Julien Lavenus (<jl.tdcor@gmail.com>)

Examples

draw the profile of GATA23 in the LR dataset

```
data(LR_dataset)
data(times)
draw.profile(LR_dataset,"AT5G26930",col="blue",main="GATA23")
```
estimate.delay *Estimate the time shift between two gene profiles and make a plot*

Description

estimate.delay computes the delay/time shift between two gene expression profiles contained in dataset. It returns a list with one or two estimated time shifts and their associated correlation. By default the function also returns a plot composed of four panels which show in more details how these estimate were obtained. This can help the user finding the appropriate parameter values to be used with the TDCOR main function. For more details see below.

Usage

```
estimate.delay(dataset, tar, reg, times, time_step, thr_cor, tol,
delaymax, delayspan, ...)
```
Arguments

Details

Negative time shifts occur when the gene which the user set as being the regulator could actually be the target. When two time shifts are returned, one is necessarily positive and the other is negative. When the only time shift estimate is zero, the function does not return any estimate.

The function automatically guess the sign of the potential interaction (stimulatory or inhibitory) and adapt the analysis based on it. The sign of the potential interaction is indicated in the main title of the graph by (+) or (-). When both types of interaction are possible, the function generates two graphs (one for each sign).

The function returns by default a graph composed of four panels. The top panel shows the spline functions of the two normalised expression profiles with respect to time. The second panel consists of the plots of the F1 and F2 functions with respect to the time shift (mu). The third one is for the F3 and F4 functions. All of these four functions aim at estimating the time shift between the two expression profiles by minimizing a distance-like measurement. But they each do it in a slightly different manner. F1 and F3 use Pearson's correlation as a measure of distance while F2 and F4

LR_dataset 13

use the sum of squares. Moreover F1 and F2 measure the distances directly between the spline functions while F3 and F4 do it between the first derivatives of these functions. The vertical red and purple lines in the second and third panel indicate the position of the respective maximum or minimum of the functions. In the fourth and last panel, the final score function is plotted. This score is computed for each possible time shift analysed by combining the four above-mentionned functions. The green horizontal line indicate the position of the tolerance threshold (tol) above which time shift estimates are rejected. The vertical dark grey line(s) represent(s) the position of the final estimated time shift(s). All these lines necessarily fall into regions where the score function is below the threshold (painted in light green). Other vertical light grey line(s) may indicate other time shift estimate(s) that have a score above the tolerance threshold and were therefore rejected.

Value

The function returns a list. The first element (delay) is a numerical vector containing the time-shift estimate(s). The second element (correlation) is another numerical vector containing the associated correlation. The function also returns a graph as explained above.

Author(s)

Julien Lavenus <il.tdcor@gmail.com>

Examples

```
# Load the data
```

```
data(LR_dataset)
data(l_genes)
data(l_names)
data(times)
```
Estimate the time shift between LBD16 and PUCHI (one time shift estimate returned)

```
estimate.delay(dataset=LR_dataset, tar=l_genes[which(l_names=="PUCHI")],
reg=l_genes[which(l_names=="LBD16")], times=times, time_step=1, thr_cor=0.7,
tol=0.15, delaymax=3, delayspan=12, reg.name="LBD16",tar.name="PUCHI")
```
Estimate the time shift between ARF8 and PLT1 (two time shift estimates returned)

```
estimate.delay(dataset=LR_dataset, tar=l_genes[which(l_names=="PLT1")],
reg=l_genes[which(l_names=="ARF8")], times=times, time_step=1, thr_cor=0.7,
tol=0.15, delaymax=3, delayspan=12, reg.name="ARF8",tar.name="PLT1")
```


Description

LR_dataset is a matrix of dimension 15240 lines x 18 columns. It stores a time-series transcriptomic dataset following the changes occuring in a young Arabidopsis root during the formation of a lateral root. To generate this dataset, lateral root formation was locally induced by a gravistimulus at $t=0$ and the stimulated part of the roots was collected every 3 hours from 6 hours to 54 hours. The transcriptomes were analyzed using the ATH1 affymetrix chip. For time point 0, unstimulated young primary root was taken as a control. Importantly, the transcript accumulation levels stored in this dataset are non-log2 values.

Usage

```
data("LR_dataset")
```
Details

The experiment spanned 54 hours in order to cover all aspects of lateral root development. Using this method, lateral root initiation (the first pericycle divisions) occurs synchroneously in all stimulated roots around 12 hours after stimulation and the fully formed lateral root emerges from the parental root around 45 hours. The dataset contains data for all significantly differentially expressed genes.

Each column is the average of 4 independent replicates. The columns are organized in the following order: 0, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51 and 54 hours. Each line of the matrix is labbelled with an AGI gene code (Arabidopsis Genome Initiative gene code).

Source

Voss *et al.*, Lateral root organ initiation re-phases the circadian clock in Arabidopsis thaliana. Nature communication, *in revision*.

Examples

Load the dataset data(LR_dataset)

Have a look at the first rows head(LR_dataset)

l_genes *l_genes*

Description

Character vector containing the AGI gene codes of the genes used to reconstruct the network in Lavenus et al. 2015, Plant Cell.

l_names 15

Usage

data("l_genes")

Examples

Load the vector data(l_genes)

Have a look at it l_genes

Description

Character vector containing the 'everyday names' of the genes used to reconstruct the network in Lavenus et al. 2015, Plant Cell.

Usage

data("l_names")

Examples

```
# Load the vector
data(l_names)
# Have a look at it
l_names
```
l_prior *l_prior*

Description

Vector containing the prior associated with the genes included in the network reconstruction in Lavenus et al. 2015, Plant Cell.

By defining the l_prior vector, the user defines which genes should be regarded as positive regulators, which others as negative regulators and which can only be targets. The prior code is defined as follow: -1 for negative regulator; 0 for non-regulator (target only); 1 for positive regulator; 2 for both positive and negative regulator. The i-th element of the vector is the prior to associate to the i-th gene in l_genes.

Usage

data("l_prior")

Examples

Load the vector data(l_prior)

Have a look at it l_prior

shortest.path *Calculate the shortest path linking every pairs of nodes in the network*

Description

shortest.path computes the shortest influence path (in number of edges) linking every possible regulator/target pairs in the network.

Usage

shortest.path(bootstrap, BS_thr)

Arguments

Details

The paths are signed in order to keep track of the type of influence that the genes have on each other. If a path leads to the inhibition of a gene by another, shortest.path will return a negative number for this "pair" (Note that the (i,j) pair is not regarded as being the same than the (j,i) pair). Because the network is directed, edges can only be followed in one direction: from the regulator to the target. Hence if the network contains an edge from gene i to gene j, the length of the shortest path from i to j is 1 edge and therefore the function returns either 1 or -1 (depending on the sign of the interaction) for the length of i to j path. In absence of feedback loops between i and j, the network does not contain any path from gene j to gene i. In this case shortest.path shall return 0 for the length of the j to i path. Otherwise it will return the minimum number of edges to follow to go from j to i.

TDCOR and the state of the

Value

shortest.path returns a list containing two matrices.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

Examples

Example with a 3-genes network where gene A upregulates B which upregulates A; and C represses B. ## the three edges have different bootstrap values (100, 60 and 55)

```
network=data.frame(matrix(c(0,100,0,0,60,0,0,-55,0),3,3))
names(network)=c("gene A","gene B","gene C")
rownames(network)=c("gene A","gene B","gene C")
```

```
shortest.path(as.matrix(network),1)
```
TDCOR *The TDCOR main function*

Description

This is the main function to run the TDCOR algorithm and reconstruct the gene network topology.

Usage

```
TDCOR(dataset,l_genes, TPI, DPI, ...)
```
Arguments

TPI A TPI database generated by [CalculateTPI](#page-6-1) which contains some necessary statistical information for triangle motifs pruning. In particular it must have an entry for all the regulators included in the network analysis. The TPI database may also contain data for genes that are not included in l_genes.

DPI A DPI database generated by [CalculateDPI](#page-3-1) which contains some necessary statistical information for diamond motifs pruning. In particular it must have an entry for all the regulators included in the network analysis. The DPI database may also contain data for genes that are not included in l_genes.

> ... Additional arguments to be passed to the TDCOR function (Some are necessary if dataset is not the LR dataset):

- l_names: A character vector containing the 'everyday names' of the genes included in the analysis (e.g. "LBD16") . These are the names by which genes will be refered as to in the final network table. Gene names must be unique; repeats of the same name are not allowed. If no l_names parameter is given, it is by default equal to l_genes. The i-th element of the vector l_names contains the 'everyday name' of the i-th gene in l_genes.
- 1_prior: A numerical vector containing the prior information on the genes included in the analysis. By defining the l_prior, the user defines which genes are positive regulators, which are negative regulators and which can only be targets. The prior code is defined as follow: -1 for negative regulator; 0 for non-regulator (target only); 1 for positive regulator; 2 for genes that can act as both positive and negative regulators. If no 1_prior parameter is provided, it is by default equal to a vector of 2s, meaning that all genes are regarded as being both potential activators and repressors. The i-th element of the vector l_prior contains the prior to associate to the i-th gene in l_genes.
- times: A numerical vector containing the successive times (in hours) at which the samples were collected to generate the time-series transcriptomic dataset.If no times parameter is given, it is by default equal to the times parameter used for the lateral root transcriptomic dataset.
- n0: An integer corresponding to the number of iterations to be performed in the external bootstrap loop. At the beginning of every iteration of this external loop, new random parameter values are sampled in the user-defined bootstrapping interval. If no n0 parameter is given, it is by default equal to 1000.
- n1 : An integer corresponding to the number of iterations to be performed in the internal bootstrap loop. In this loop parameter values are kept the same but the order of node analysis is randomized at each iteration. If no n1 parameter is provided, it is by default equal to 10.
- time_step: A positive number corresponding to the time step (in hours) i.e. the temporal resolution at which the gene profiles are analysed. If no time_step parameter is provided, it is by default equal to 1 hour.
- delayspan: A positive number. It is the maximum time shift (in hours) which is analysed. It should be high enough for the time shift estimation process to be successful but argueably relatively small in comparison to the overall duration of the time series. (e.g. for the LR dataset which has data spanning over 54 hours, delayspan was set to 12 hours).

- • tol: A strictly positive number corresponding to the tolerance threshold on the final score of time shift estimates. The score is a positive number that measures the "level of disagreement" between the four time shift estimators. A time shift estimate is regarded as meaningful if it scores lower than the tol threshold. If all four estimators agree on a certain value of time shift, the estimate obtains the best possible score, which is 0. Increasing tol make the time shift estimation process LESS stringent. For more information see [estimate.delay](#page-10-1).
- delaymin: A numerical vector containing one or two positive elements corresponding to the boundaries of the boostrapping interval for the minimum time shift above which putative interactions are regarded as possible. If no delaymin parameter is provided, it is by default equal to 0 hour. Gene pairs with time shift lower than or equal to delaymin are regarded as coregulation and are therefore not included in the network.
- delaymax: A numerical vector containing one or two positive elements corresponding to the boundaries of the boostrapping interval for the maximum time shift above which putative interactions are regarded as indirect. If no delaymax parameter is provided, it is by default equal to 3 hours. Putative indirect interactions are included in the network only when the putative target is not predicted any direct regulator.
- thr_cor: A numerical vector containing one or two positive elements between 0 and 1 corresponding to the boundaries of the boostrapping interval for the threshold of Pearson's correlation. A gene pair is included in the preliminary network only if the correlation between the profiles (with the time shift correction) is higher than or equal to the thr_cor threshold. If no thr_cor parameter is provided, it is by default equal to [0.7;0.9]. Note that increasing thr_cor makes the correlation filter MORE stringent.
- delay: A positive number corresponding to the most likely time shift (in hours) one could expect between the profile of a regulator and the profile of its direct targets. This parameter enables one to generate the reference profiles of the ideal regulator when calculating the index of directness (ID). If no delay parameter is provided, it is by default equal to 3 hours. Note that similar parameters serving the same purpose are also used to calculate the triangle pruning index and the diamond pruning index. But TDCOR reads the value to use for calculating those indices directly from the TPI and DPI databases (for consistency reasons).
- thr_ind1: A numerical vector containing one or two positive elements corresponding to the boundaries of the boostrapping interval for the index of directness (ID) lower threshold. Gene pairs showing an ID below this threshold will be regarded as co-regulation and therefore eliminated from the network. If no thr_ind1 parameter is provided, it is by default equal to 0.5. Reminder: For direct interaction one expects ID values around 1. For indirect interactions one expect values greater than 1. For co-regulated genes, ID should be smaller than 1. Note that increasing thr_ind1 makes the ID-based "anti-coregulation filter" MORE stringent.
- thr_ind2: A numerical vector containing one or two positive elements corresponding to the boundaries of the boostrapping interval for the index of directness (ID) upper threshold. Putative interactions showing an ID above

this threshold are regarded as indirect. If no thr_ind2 parameter is provided, it is by default equal to 4.5. Reminder: For direct interaction one expects ID values around 1. For indirect interactions one expect values greater than 1. For co-regulated genes, ID should be smaller than 1. Note that increasing thr_ind2 makes the ID-based filter against indirect interactions LESS stringent.

- thr_overlap : A numerical vector containing one or two positive elements smaller than 1. These correspond to the boundaries of the boostrapping interval for the index of overlap. If no thr_overlap parameter is provided, it is by default equal to [0.5,0.6]. Note that increasing thr_overlap makes the overlap filter MORE stringent. This filter aims at removing unlikely negative interactions where the putative regulator switches on too late to downregulate the putative target. Keep in mind that the filter is sensitive to the noise level in the data. It should only be used if the data has a very low level of noise. To inactivate the filter set the thr_overlap parameter to 0.
- thrpTPI: A numerical vector containing one or two positive numbers smaller or equal to 1 in increasing order. These correspond to the boundaries of the boostrapping interval for the probability threshold used in the triangle filter. If no thrpTPI parameter is provided, it is by default equal to [0.5,0.75]. Note that increasing thrpTPI makes the triangle filter LESS stringent.
- thrpDPI: A numerical vector containing one or two positive numbers smaller or equal to 1 in increasing order. These correspond to the boundaries of the boostrapping interval for the probability threshold used in the diamond filter. If no thrpTPI parameter is provided, it is by default equal to [0.8,0.9]. Note that increasing thrpDPI makes the diamond filter LESS stringent.
- thr_isr: A numerical vector containing one or two positive elements corresponding to the boundaries of the boostrapping interval for the threshold of the index of directness above which the gene is predicted to negatively self-regulate. Genes will be predicted to positively self-regulate if the index of directness is smaller than 1/thr_isr. If no thr_isr parameter is provided, it is by default equal to [3,6]. Note that increasing thr_isr makes the search for self-regulating genes MORE stringent.
- search.EP: A boolean to control whether Master-Regulator-Signal-Transducer (MRST) or signal Entry Point (EP) should be looked for or not. (If yes, set on TRUE which is the default value)
- thr_bool_EP: A number between 0 and 1 used as threshold to convert normalized expression profiles (values between 0 and 1) into boolean expression profiles (values equal to 0 or 1). If no thr_bool_EP parameter is provided, it is by default equal to 0.8. The conversion of the continuous profiles into boolean profiles is part of the process of MRST analysis.
- MinTarNumber: An integer. Minimum number of targets a regulator should have in order to be regarded as a potential MRST. If no MinTarNumber parameter is provided, it is by default equal to 5. Note that increasing MinTarNumber makes the search for MRST genes MORE stringent.
- MinProp: A number between 0 and 1. Minimum proportion of targets which are not at steady state at $t=0$ that a regulator should have in order to be regarded as a potential MRST. If no MinProp parameter is provided, it

is by default equal to 0.75. Note that increasing MinProp makes the search for MRST genes MORE stringent.

- MaxEPNumber: An integer. Maximum number of MRST that can be predicted at each iteration. If no MaxEPNumber parameter is provided, it is by default equal to 1.
- regmax: An integer. Maximum number of regulators that a target may have. If no regmax parameter is provided, it is by default equal to 6.
- outfile_name: A string. Name of the file to print the network table in. By default it is "TDCor_output.txt".

Details

The default values are certainly not the best values to work with. The TDCOR parameters have to be optimized by the user based on its own knowledge of the network, the quality of the data etc... Because TDCOR works by pruning interactions, it is probably easier (as a first go) to optimize the parameter values following the order of the filters.

Before starting inactivate all the filters using the less stringent parameter values possible or for the MRST filter by setting search.EP to FALSE. You should as well set the bootstrap parameters to a relatively low value (e.g. $n\theta = 100$ and $n\theta = 1$). Hence the runs will be quick and you will be able to rapidly assess whether the changes you made in the parameter values were a good thing.

Start by optimizing the parameters involved in time shifts estimation. That is to say, essentially delayspan, time_step, tol and delaymax. The latter (together with delaymin) is a biological parameters and the range of possible values is argueably limited. Though they ought to be adapted to the organism (e.g. in prokaryotes, the delays are extremely short since polysomes couple transcription and translation). Note that the estimate delay function can be very helpful to optimize these various parameters thanks to the visual output. Use it with pairs of genes that have been shown to interact directly or indirectly in your system and for which the relationship in the dataset in clearly linear. For network reconstruction with TDCor, good time shift estimation is absolutely crucial. Once this is done, proceed with optimizing the threshold for correlation thr_cor and the thresholds on the index of directness (thr_ind1, thr_ind2). Then optimize the parameters of the triangle and diamond pruning filters (thrpTPI and thrpDPI). You may have to try a couple of different TPI and DPI databases (i.e. databases built with different input parameters). In particular increasing the noise level when generating these database enables one to decrease the stringency of the triangle and diamond filters, when increasing the thrpTPI and thrpDPI value is not sufficient. Subsequently fine-tune the parameters of the MRST filter (thr_bool_EP, MinTarNumber, MinProp, MaxEPNumber) if you want it on. Remember to set search.EP back to TRUE first. Next optimize thr_isr (self-regulation). Finally, restrict the number of maximum regulators if necessary (regmax).

Value

The TDCOR main function returns a list containing 7 elements

input A list containing the input parameters (as a reminder). intermediate A list containing three intermediate matrices. mat_cor is the matrix that stores the correlations, mat_isr stores the indices of self-regulations and mat_overlap contains the indices of overlap.

The table of predictions (without header) and the input parameters are printed at the end of the run in two separate text files located in the current R working directory (If you are not sure which directory this is, use the command getwd()).

Note

For a parameter to be involved in the bootstrapping process, one must feed the function a vector containing two values as input. These two values are respectively the lower and upper boundaries of the bootstrapping interval. If one chooses not to use a parameter for bootstrapping, one can either feed the function an input vector containing twice the same value, or only one value.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

References

Lavenus *et al.*, 2015, The Plant Cell

See Also

See also [CalculateDPI](#page-3-1), [CalculateTPI](#page-6-1), [UpdateDPI](#page-24-2), [UpdateTPI](#page-26-1), [TDCor-package](#page-1-1).

Examples

```
## Not run:
# Load the lateral root transcriptomic dataset
data(LR_dataset)
# Load the vectors of gene codes, gene names and prior
data(l_genes)
data(l_names)
data(l_prior)
```
Load the vector of time points for the LR_dataset

TDCOR 23

data(times)

```
# Generate the DPI databases
DPI15=CalculateDPI(dataset=LR_dataset,l_genes=l_genes,l_prior=l_prior,
times=times,time_step=1,N=10000,ks_int=c(0.5,3),kd_int=c(0.5,3),delta_int=c(0.5,3),
noise=0.15,delay=3)
# Generate the TPI databases
TPI10=CalculateTPI(dataset=LR_dataset,l_genes=l_genes,
l_prior=l_prior,times=times,time_step=1,N=10000,ks_int=c(0.5,3),
kd_int=c(0.5,3),delta_int=c(0.5,3),noise=0.1,delay=3)
# Check/update if necessary the databases (Not necessary here though.
# This is just to illustrate how it would work.)
TPI10=UpdateTPI(TPI10,LR_dataset,l_genes,l_prior)
DPI15=UpdateDPI(DPI15,LR_dataset,l_genes,l_prior)
### Choose your TDCOR parameters ###
# Parameters for time shift estimatation
# and filter on time shift value
ptime_step=1
ptol=0.13
pdelayspan=12
pdelaymax=c(2.5,3.5)
pdelaymin=0
# Parameter of the correlation filter
pthr_cor=c(0.65,0.8)
# Parameters of the ID filter
pdelay=3
pthr_ind1=0.65
pthr_ind2=3.5
# Parameter of the overlap filter
pthr_overlap=c(0.4,0.6)
# Parameters of the triangle and diamond filters
pthrpTPI=c(0.55,0.8)
pthrpDPI=c(0.65,0.8)
pTPI=TPI10
pDPI=DPI15
# Parameter for identification of self-regulations
pthr_isr=c(4,6)
# Parameters for MRST identification
pMinTarNumber=5
```

```
24 TF
```
pMinProp=0.6

Max number of regulators pregmax=5 # Bootstrap parameters pn0=1000 pn1=10 # Name of the file to print network in poutfile_name="TDCor_output.txt" ### Reconstruct the network ### tdcor_out= TDCOR(dataset=LR_dataset,l_genes=l_genes,l_names=l_names,n0=pn0,n1=pn1, l_prior=l_prior,thr_ind1=pthr_ind1,thr_ind2=pthr_ind2,regmax=pregmax,thr_cor=pthr_cor, delayspan=pdelayspan,delaymax=pdelaymax,delaymin=pdelaymin,delay=pdelay,thrpTPI=pthrpTPI, thrpDPI=pthrpDPI,TPI=pTPI,DPI=pDPI,thr_isr=pthr_isr,time_step=ptime_step, thr_overlap=pthr_overlap,tol=ptol,MinProp=pMinProp,MinTarNumber=pMinTarNumber, outfile_name=poutfile_name)

End(Not run)

TF *Table of 1834 Arabidopsis Transcription factors*

Description

TF is a dataframe with two columns. The first column contains the AGI gene code of 1834 genes encoding Arabidopsis transcription factors. The second column contains the associated gene names.

Usage

data("TF")

Source

Data published on the Agris database website (<http://arabidopsis.med.ohio-state.edu/AtTFDB/>).

References

Davuluri et al. (2003), **AGRIS: Arabidopsis Gene Regulatory Information Server, an informa**tion resource of Arabidopsis cis-regulatory elements and transcription factors, BMC Bioinformatics, 4:25

times 25

Examples

```
# Load the database
data(TF)
# Obtain the transcription factors for which data is available in the LR dataset
# i.e. present on ATH1 chip and differentially expressed.
data(LR_dataset)
clean.at(LR_dataset,TF[,1])
```
times *The* times *vector to use with the lateral root dataset*

Description

Contains the times (in hours) at which the samples were collected to generate the Lateral Root transcriptomic dataset (data(LR_dataset))

Usage

data("times")

Examples

Load the vector associated with the LR dataset data(times)

Have a look at it times

UpdateDPI *Update or check the DPI database*

Description

UpdateDPI analyzes the DPI database and add new entries into it if it does not contain all the necessary data for reconstructing the network with the genes listed in the vector l_genes.

Usage

UpdateDPI(DPI,dataset,l_genes, l_prior)

Arguments

Value

UpdateDPI returns an updated DPI database containing data for at least all the genes in l_genes whose associated prior is not null.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

See Also

See also [CalculateDPI](#page-3-1).

Examples

```
## Not run:
# Load the Lateral root transcriptomic dataset
data(LR_dataset)
```

```
# Load the vector of gene codes, gene names and prior
data(l_genes)
data(l_names)
data(l_prior)
```
Load the vector of time points for the LR_dataset data(times)

```
# Build a very small DPI database (3 genes)
DPI_example=CalculateDPI(dataset=LR_dataset,l_genes=l_genes[4:6],l_prior=l_prior[4:6],
times=times,time_step=1,N=5000,ks_int=c(0.5,3),kd_int=c(0.5,3),delta_int=c(0.5,3),
noise=0.15,delay=3)
```

```
# Add one gene in the database
DPI_example=UpdateDPI(DPI_example,dataset=LR_dataset,l_genes[4:7],l_prior[4:7])
```
End(Not run)

Description

UpdateTPI analyzes the TPI database and add new entries into it if it does not contain all the necessary data for reconstructing the network with the genes listed in the vector l_genes.

Usage

UpdateTPI(TPI, dataset, l_genes, l_prior)

Arguments

Value

UpdateTPI returns an updated TPI database containing data for at least all the genes in l_genes whose associated prior is not null.

Author(s)

Julien Lavenus <jl.tdcor@gmail.com>

See Also

See also [CalculateTPI](#page-6-1).

Examples

```
## Not run:
# Load the Lateral root transcriptomic dataset
data(LR_dataset)
```
Load the vector of gene codes, gene names and prior

```
data(l_genes)
data(l_names)
data(l_prior)
# Load the vector of time points for the LR_dataset
data(times)
# Build a very small TPI database (3 genes)
TPI_example=CalculateTPI(dataset=LR_dataset,l_genes=l_genes[4:6],
l_prior=l_prior[4:6],times=times,time_step=1,N=5000,ks_int=c(0.5,3),
kd_int=c(0.5,3),delta_int=c(0.5,3),noise=0.1,delay=3)
# Add one gene in the database
TPI_example=UpdateTPI(TPI_example,dataset=LR_dataset,l_genes[4:7],l_prior[4:7])
```
End(Not run)

Index

```
∗ Main functions
    CalculateDPI, 4
    CalculateTPI, 7
    TDCOR, 17
    UpdateDPI, 25
    UpdateTPI, 27
∗ Side functions
    clean.at, 10
    draw.profile, 10
    estimate.delay, 11
    shortest.path, 16
∗ datasets
    l_genes, 14
    l_names, 15
    l_prior, 15
    LR_dataset, 13
    TF, 24
    times, 25
CalculateDPI, 2, 3, 4, 18, 22, 26
CalculateTPI, 2, 3, 7, 18, 22, 27
clean.at, 10
draw.profile, 3, 10
estimate.delay, 3, 11, 19, 21
l_genes, 2, 3, 14
l_names, 2, 3, 15
l_prior, 2, 3, 15
LR_dataset, 3, 13
shortest.path, 3, 16
TDCOR, 2, 3, 17
TDCor-package, 2
TF, 3, 24
times, 2, 3, 25
UpdateDPI, 2, 3, 6, 22, 25
UpdateTPI, 2, 3, 9, 22, 27
```